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Silver nanoparticles (AgNPs) show different physical and chemical properties compared

to their macroscale analogs. This is primarily due to their small size and, consequently,

the exceptional surface area of these materials. Presently, advances in the synthesis,

stabilization, and production of AgNPs have fostered a new generation of commercial

products and intensified scientific investigation within the nanotechnology field. The use

of AgNPs in commercial products is increasing and impacts on the environment and

human health are largely unknown. This article discusses advances in AgNP production

and presents an overview of the commercial, societal, and environmental impacts of

this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine

the challenges associated with AgNP characterization, discuss the importance of the

development of NP reference materials (RMs) and explore their role as a metrological

mechanism to improve the quality and comparability of NP measurements.

Keywords: silver nanoparticles, synthesis, characterization, environment health and safety, metrology, reference

materials

DEFINING NANOMATERIALS AND NANOPARTICLES: THEIR
IMPORTANCE IN NANOSCIENCE, AND NANOTECHNOLOGY

Standardization of vocabulary and nomenclature used in nanotechnology and nanoscience creates
a common language through which research and industrial activities can be defined. Moreover,
robust and well-founded definitions of the terms in these fields are essential to the formation of
legally defensible and beneficial regulations to protect the environment and human health (ISO/TS
80004-1, 2015). Currently, an internationally harmonized definition for the term “nanomaterial”
has not been established (Lövestam et al., 2010). Rather, a wide range of definitions are being used
by different national authorities, scientific committees, and international organizations (Lidén,
2011; Boverhof et al., 2015; Contado, 2015), a few of which are discussed in this manuscript.
The International Organization for Standardization (ISO) develops voluntary, consensus-based
standards through the participation of over 160 national standards bodies and has been active in the
promotion of uniform terminology in the field of nanotechnology. ISO defines a nanomaterial “as
a material having any external dimension in the nanoscale or having internal structure or surface
structure in the nanoscale” (ISO/TS 80004-1, 2015). The term “nanoscale” is further defined by
ISO as the “length range approximately from 1 to 100 nm” (ISO/TS 80004-1, 2015). ISO classifies
nanomaterials in two main categories: Nano-objects and nanostructured materials. A nano-object
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is described as a “discrete piece of material with one, two or three
external dimensions in the nanoscale” (ISO/TS 80004-1, 2015)
and a nanostructured material is a “material having internal
structure or surface structure in the nanoscale” (ISO/TS 80004-
4, 2011). Nano-objects, can be classified into three categories
(see Figure 1) depending on their size and shape characteristics
(ISO/TS 80004-1, 2015):

1. Nanoparticle (NP): “Nano-object with all external dimensions
at the nanoscale where the lengths of the longest and shortest
axes of the nano-object do not differ significantly”,

2. Nanofiber: “Nano-objects with two external dimensions at the
nanoscale and the third dimension significantly larger”,

3. Nanoplate: “Nano-objects with one external dimension in the
nanoscale and the other two dimensions significantly larger”,

ISO also provides a simple and general definition for engineered
nanomaterials indicating that they are “nanomaterials designed
for specific purposes or functions” (ISO/TS 80004-1, 2015).

Other organizations, federal agencies, and government
bodies have developed their own approach to categorizing
nanomaterials with the goal of assessing and controlling risk.
The United States Environmental Protection Agency (U.S. EPA)
has developed reporting and recordkeeping requirements for
companies that manufacture or process nanoscale chemical
substances. The entity describes “nanoscale chemical substances”
as “chemical substances containing primary particles, aggregates,
or agglomerates in the size range of 1 to 100 nm in at
least one dimension” (EPA, 2015). The U.S. Food and Drug
Administration (U.S. FDA) has issued a series of guidance
documents with respect to the use of nanotechnology in FDA-
regulated products (Hamburg, 2012; U.S. FDA, 2015). For
example, when considering whether an U.S. FDA-regulated
product involves nanotechnology, the U.S. FDA offers “Points
to Consider” such as whether a material or product is
engineered to have at least one dimension in the nanoscale
range, or whether it exhibits chemical or physical properties
or biological effects attributable to its dimensions (Croce,
2014; U.S. FDA, 2014). In recent years, the European Union
(EU) has been engaged in a number of efforts to define
“nanomaterials” and “engineered nanomaterial.” Particularly, the
European Commission recommended the following definition
for a nanomaterial: “Nanomaterial means a natural, incidental,
or manufactured material containing particles, in an unbound
state or as an aggregate or as agglomerate and where, for 50%
or more of the particles in the number size distribution, one
or more external dimensions in the size range 1–100 nm”
(Commission Recommendation, 2011). The definitions cited
in this directive are generally based on the ISO definition;
however, they have been adapted with the goal of incorporating
other technical concepts such as aggregation/agglomeration,
particle size distribution, and particle number concentration
(Commission Recommendation, 2011). Additionally, the EU
has issued a series of directives in the fields of cosmetics
(Regulation (EC) No 1223/2009), biocides (Regulation (EU) No
528/2012), food (Regulation (EU) No 1363/2013, Regulation
(EU) No 1363/2013), and any food that was not used for human

consumption to a significant degree, commonly denominate
“novel food”. (Regulation (EU) 2015/2283). Recently, extensive
technical work has begun to focus on the goal of providing
recommendations on the possible use and limitations of some
measurement techniques (MTs) with respect to the application
of the EU definition (Babick et al., 2016).

Efforts to adapt and/or recast existing regulations to
define fundamental concepts and applications of nanomaterials
in consumer products are taking place in France (Decree
No 2012-232) Belgium (Decree No 2014/24329), Denmark
(Decree No 644 of 13/06/2014), and Canada (Health Canada,
2011). These countries have recently enacted their own
policies to study the potential risks associated with the
commercialization of nanomaterials by collecting information
and establishing inventories. For instance, with the goal of
identifying and assessing potential risks and benefits, Canadian
regulatory agencies request information from manufacturers
and other stakeholders on physical-chemical properties such as
composition, purity, morphology, particle size/size distribution,
chemical reactivity, agglomeration/aggregation state, as well as
information on the methods used to assign these properties
(Health Canada, 2011).

Despite efforts in recent years to properly define
nanotechnology-related terms, more work needs to be done
with respect to the harmonization and standardization of
the terminology used in this field. For example, the term
“nanoparticle” is defined differently by ISO (ISO/TS 80004-2,
2015), ASTM (ASTM E2456-06, 2012), and IUPAC (Alemán
et al., 2007) with regard to the number of dimensions and shapes
that can be attributed to NPs. This however, does not imply
that one definition is accurate while another is not; rather it
demonstrates that definitions and terms in the nanotechnology
field are still evolving and highlights the importance of generating
robust descriptors for these emerging materials to satisfy the
variety of angles where the terminology would be applied.

IMPACTS OF THE NANOPARTICLES AND
SILVER NANOPARTICLES (AgNPS) ON
COMMERCE, TECHNOLOGY AND
SOCIETY

In the past decade, the world has seen an exponential growth
in the application of nanoscience and nanotechnology, leading
to great strides in the development of new nanomaterials (see
Figure 2). (López-Lorente and Valcárcel, 2016). This increase
in innovation is largely due to the special properties that these
materials possess at the nanoscale, leading to enhancement of
mechanical (Calahorra et al., 2016), dimensional (Lee et al.,
2011), electrical (Segev-Bar and Haick, 2013), magnetic (Reddy
et al., 2012), photochemical (Watanabe et al., 2006), and catalytic
(Gawande et al., 2016) attributes, to name a few. In general
terms, NP applications are impacting different fields such as
biomaterials (Ediriwickrema and Saltzman, 2015), composites
(Ahmad et al., 2015), ceramics (Birol et al., 2013), polymers
(Pecher andMecking, 2010), food (Tiede et al., 2008), agriculture
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FIGURE 1 | Schematic diagrams displaying shape designations for nano-objects (A) Nanoparticle, (B) Nanofiber (C) Nanoplate ©ISO. This material is

excerpted from ISO 80004-2:20015 with permission from the American National Standard Institute (ANSI) on behalf of ISO. All rights reserved.

FIGURE 2 | (A) Number of nanotechnology patents published by the United State Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the

Japan Patent Office (JPO) between 1976 and 2005, demonstrating the exponential growth of this emerging technology. The drop in the number of USPTO patents in

2005 is due to the USPTO enforcing a stricter definition of the term “nanotechnology.” The decline in the number of JPO patents for 2005 and 2006 is due to the delay

between the publication and granting of patents at the JPO (Chen et al., 2008a). Reprinted by permission from Macmillan Publishers Ltd: [Nature Nanotechnology],

copyright (2008) (B) Number of nanoscience papers indexed in Scopus® Elsevier between 2000 and 2014 by Shin et al. (2015) CC BY 2.0. This figure demonstrates

the quick and substantial advances in the investigation in the nanoscience field.

(Parisi et al., 2015; Phogat et al., 2016), and energy (Lohse and
Murphy, 2012).

All of this escalation in the research and development of
new NP applications will have a direct impact on commerce
and society. In 2011, it was estimated that US$ 65 billion had
been invested into the nanotechnology field (Miller andWickson,
2015). Moreover, it was projected that a cumulative investment
of US$150 billion would be made by the private sector into the
field by 2015 (Cientifica, 2011). It was further predicted that
nanotechnology in the form of NPs would impact different fields
such as electronics, information technology and manufactured
goods in health care and life sciences (Lux Research, 2008;
Fiorino, 2010; Sargent, 2016). These projections are reflected in
the growth of the numbers of consumer products incorporating
NPs into their formulations. These numbers have grown from a
total of 54 products identified in 2005 to over 1,800 nanomaterial-

and NP-containing consumer products in 2014 produced by
622 companies in 32 countries (Vance et al., 2015). The variety
of products ranged from goods for children to personal care
products (Figure 3), with metals and metal oxides being the
most commonly used NPs in commercial products. Although,
silicon dioxide NPs (SiO2-NPs), titanium oxide NPs (TiO2-NPs),
and zinc oxide NPs (ZnO-NPs), are produced in the greatest
quantities worldwide, with a global production of 5,500 t per year,
3,000 t per year and 550 t per year, respectively (Piccinno et al.,
2012; Keller et al., 2013).

In recent years, there have been various estimates of the
global production of AgNPs. (Whiteley et al., 2013). Mueller
and Nowack (2008), estimated a worldwide AgNP production
of 500 t per year for 2009, while Gottschalk et al. (2009)
estimated 320 t for this same year. In the U.S. alone, Hendren
et al. estimated in 2011 that between 2.8 t and 20 t of AgNPs
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FIGURE 3 | (A) Number of available nanomaterial-containing consumer products over time (since 2007) by category (black print) and sub category (red print). (B)

Claimed composition of nanomaterials listed in the Nanotechnology Consumer Product Inventory, grouped into five major categories: Not advertised, metal (including

metals and metal oxides), carbonaceous nanomaterials (carbon black, carbon nanotubes, fullerenes, graphene), silicon-based nanomaterials (silicon and silica), and

other (organics, polymers, ceramics, etc.). The insert in 3b shows the claimed elemental composition of nanomaterials listed in the metals category: silver, titanium,

zinc, gold, and other metals (magnesium, aluminum oxide, copper, platinum, iron, and iron oxides, etc.). Adapted from Vance et al. (2015) with the permission of

Beilstein-Institut. CC BY 2.0.

would potentially be produced per year Hendren et al. (2011).
It is projected that the global nanotechnology industry will
continue to grow significantly. Specifically, the production of
AgNPs is expected to reach approximately 800 t by 2025 (Pulit-
Prociak and Banach, 2016). Vance et al. (2015) showed that
AgNPs have greater marketing value than other NPs and their
presence in consumer products are more widely advertised.
This noted popularity can be attributed to the well-documented
antimicrobial properties of ionic silver (Le Ouay and Stellacci,
2015). It should be clear that AgNPs by themselves have no
antibacterial or antifungal properties, but it is the release of
silver ions due to the destabilization of the AgNPs which confers
such properties. Other distinctive physico-chemical properties of
AgNPs such as high electrical and thermal conductivity (Alshehri
et al., 2012), surface-enhanced Raman scattering (Nie and Emory,
1997), catalytic activity (Xu et al., 2006), and non-linear optical
properties (Kelly et al., 2003), have led to a variety of new
products and scientific applications (Tran et al., 2013).

The physico-chemical properties mentioned above offer
AgNPs the capability of being used in a plethora of new
commercial and technological applications, including as
antiseptic agents in the medical field, cosmetic, food packaging,
bioengineering, electrochemistry, and catalysis industries (Keat

et al., 2015). As displayed in Figure 4, the antibacterial and
antimicrobial activity of AgNPs are among the main reasons for
their use in the formulation of surface cleaners, toys, textiles, air
and water disinfection, antimicrobial catheters, antimicrobial
gels, antimicrobial paints, food packaging supplies, clinical
clothing, and food preservation etc. (Wijnhoven et al., 2009;
Tolaymat et al., 2010; Tran et al., 2013).

As a specific example of the use of AgNPs in the biomedical
field, Yen et al. (2015) used AgNPs of different shapes
and sizes to develop a rapid point-of-care diagnostic device
for field-forward screening of severe acute systemic febrile
illnesses such as Dengue, Yellow Fever, and the Ebola virus,
respectively (see Figure 5). Another main use of AgNPs is
their incorporation into products in the textile field. Wu
et al. (2016), reported a simple and suitable fabrication of
cotton fabrics with tunable colors, antibacterial capabilities, and
self-healing superhydrophobic properties that can be used as
protective clothing for working in moist and less-than-sanitary
environments. This application consists of the deposition of
branched poly(ethylenimine) (PEI) AgNPs and fluorinated decyl
polyhedral oligomeric silsesquioxanes on cotton fabrics. Bollella
et al. (2017) developed a green synthesis method to produce
AgNPs by using quercetin (polyphenolic flavonoid). The AgNPs
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FIGURE 4 | Applications of AgNPs. Reproduced from Keat et al. (2015) with permission of Bioresources and Bioprocessing. CC BY 4.0

obtained were used to generate a novel third generation biosensor
capable of measuring lactose in a large linear range, with high
sensitivity and long-term stability.

Despite the promising economic benefit of the use of AgNPs
and NPs in general, there are societal concerns associated
with their use. For example, Miller and Wickson (2015) and
Patenaude et al. (2015) discussed some barriers to accurate
risk assessment and management of NPs and nanomaterials in
general. These barriers include the lack of specific regulations
for different types of NPs, the discrepancy between definitions,
the lack of validated analytical methods and test protocols, the
scarcity of reliable information about commercial use, and the
lack of reliable exposure and toxicity data. Similarly, Hofmann
et al. (2015) discussed the need for analytical methodology to
accurately characterize NP morphology as well as the need for
relevant toxicity assays in order to aid the development of
regulations concerning inorganic NPs in the biomedical field.
All of these developments, capital investment, research and
development, legislative directives, and debate over regulatory
approaches demonstrate the emergent role of NPs in technology,
commerce, and society and show the importance of thoroughly

evaluating environment, health and safety aspects associated with
their use.

SILVER NANOPARTICLES (AgNPs):
POSSIBLE IMPACTS ON ENVIRONMENT,
HEALTH AND SAFETY (EHS)

Potential Release of Ag and AgNPs in the
Environment
With the increasing incorporation of nanomaterials into
everyday consumer products, research efforts have been recently
undertaken to understand the fate, transport, and subsequent
effects of these NPs on the environment and higher organisms.
Predictive models have been used in the U.S. and Europe
to provide a prognostication of concentrations of AgNPs in
surface waters, sewage treatment plant effluents, and sewage
sludge; however, current data lack validation of the predictive
modeling (Mueller and Nowack, 2008; Gottschalk et al., 2009).
Further experimental modeling of assays is needed in order to
implement standardized air and aquatic screening for AgNPs.
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FIGURE 5 | An example of the use of AgNPs for multiplexed detection. (A) Vials of AgNPs during stepwise growth and (B) their corresponding absorption

spectra. TEM images of (C) Ag seeds, (D) orange AgNPs, (E) red AgNPs, and (F) green AgNPs. Scale bars: 50 nm. (G) Green, red, and orange (top to bottom)

AgNPs on nitrocellulose paper. (H) DLS and (I) zeta-potential of AgNPs before and after antibody conjugation. (J–N) Illustration of the flow strips conjugate with the

different antibodies and limit of detections of each biomarker. Yellow Fever (YFV), Zaire Ebola virus (ZEBOV), Dengue virus (DENV). Adapted from Yen et al. (2015) with

permission of the Royal Society of Chemistry.

The cache of studies related to the effects of AgNP production
and use on the environment are still developing, however there
is general agreement that AgNPs may be released into the
environment during several routes and processes: Synthesis,
during the manufacturing process and incorporation into
products, recycling, and disposal (see Figure 6; Gottschalk and
Nowack, 2011). One such study was conducted by researchers
at the United States Consumer Product Safety Commission
(Quadros et al., 2013), where the potential child AgNP exposure
from a variety of consumer products (i.e., toys, fabric products,
human milk storage bags, humidifiers, and accessories, etc.) was
assessed by measuring the release of Ag+ and AgNPs into water,
air, dermal wipes, orange juice, milk formula, and synthetic saliva,
sweat, and urine. They were able to rank the products and
categories on the basis of their potential for Ag bioavailability,
from most likely to least likely to be a source of bioavailable
Ag. Almost all the Ag released from fabric and toy samples
was in the ionic form. They found that sweat and urine yielded
the highest Ag+ release, while tap water had the lowest yield.
While there are currently no guidelines for Ag in consumer
products, their findings were significant as a proxy for release
of Ag as AgNPs incorporated into various textiles, fabric, and
cleaning products for antibacterial and purposes. Later, Mitrano
et al. (2014) utilized a laboratory washing machine to simulate
household laundering of textiles known to have undergone Ag
and AgNP treatments to characterize and quantify total Ag
release. Interestingly, conventional Ag treated fabrics yielded
more total Ag and more nanoparticulate-sized Ag during fabric
washing than the AgNP-treated fabrics. This was evidence that
conventional forms of Ag precipitate to form nanosized Ag
(complexes) and warrant careful considerations for regulatory

action of nano-Ag as compared to conventional Ag forms.
In fact, several other studies have focused on assessments
and quantification of the release of Ag from AgNP-containing
consumer products (Benn and Westerhoff, 2008; Kulthong et al.,
2010; Von Goetz et al., 2013). Studies such as these allow
researchers to understand the behavior of AgNPs in real-world
scenarios as well as to aid risk assessments.

Interaction of AgNPs and Soil-Plant
Systems
As residence times of NPs in soils and sediment generally
exceed residence times in aquatic systems, the soil-environment
has been shown to act as a major sink for AgNPs (Zhai
et al., 2016). Increased interaction between terrestrial ecosystems
and AgNPs are attributed to pathways that include on-
site wastewater management systems, biosolids application,
improper disposal, accidental spills, and the application of
AgNPs-containing organic fertilizers and pesticides (Blaser et al.,
2008; Anjum et al., 2013). Soil is representative of a complex
matrix in which NPs can interact, and thus constitutes a great
conduit toward understanding NP-physico-chemical behavior
(Pan and Xing, 2012). Although limited studies exist concerning
soil/AgNP interaction, modification of AgNP properties such
as dispersibility, stability, agglomeration/aggregation, dissolution
rate, aging, size, and surface area can occur through the
interaction of soil environments and AgNPs, thus affecting
their availability, retention, binding affinity, transport, and
even toxicity to organisms (Bell and Kramer, 1999; Benn and
Westerhoff, 2008; Geranio et al., 2009; Kim et al., 2010; Cornelis
et al., 2012).
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FIGURE 6 | Synthesis, application, routes of exposure, factors governing toxicology, and paradigm changes related to the AgNP production and use.

Reproduced from León-Silva et al. (2016) with permission of Springer.

Ag and AgNP composites have found use in the control of
various phytopathogens as well as for plant disease management
(Liu et al., 2002; Park et al., 2006; Jo et al., 2009). Over the course
of several studies, it was demonstrated that AgNPs were effective
against plant fungus, providing evidence that AgNPs could serve
a great purpose for controlling spore-producing fungal plant
pathogens (Kim et al., 2009b; Jung et al., 2010; Lamsal et al.,
2011a,b). While the latter studies demonstrate the benefit of
AgNP soil treatment, AgNPs have also been found to have a
deleterious effect, resulting in a drop in themetabolic abilities and
diversity of necessary soil microbial populations (Jo et al., 2009).
Hänsch and Emmerling (2010) identified that exposure to AgNPs
of increasing concentration resulted in a significant decrease in
microbial mass. A study by Zhai et al. (2016) demonstrated the
potential for AgNPs of different shapes to disrupt the metabolic
processes of natural soil microbial communities and also that soil
microbes were more vulnerable to AgNPs on the smaller size
spectrum.

Interactions of AgNPs with Biological
Media
The state of AgNPs is highly dependent upon their interaction
with surroundingmedium (Stebounova et al., 2011). Studies have

provided compelling evidence that the interaction of AgNPs with
biological media and biomolecules is complicated and can lead to
particle agglomeration, aggregation, and dissolution (Stebounova
et al., 2011; Argentiere et al., 2016). Investigations of the physical
and chemical transformation of AgNPs allow more informative
assessments of the potential of AgNPs to induce toxic responses
(Park et al., 2013). Ionic strength, pH, and the presence of
organic matter in biological and environmental media have
been identified as some of the most critical factors that may
contribute to the state and behavior of AgNPs. Stebounova
et al. (2011) investigated the fate of AgNPs in two simulated
biological fluids (artificial interstitial fluid and artificial lysosomal
fluid) and concluded that the incubation of AgNPs in either
simulated fluid led to both dissolution and precipitation of
the NPs. AgNP-instability was attributed to the failure of the
protective coatings on the NPs to prevent aggregation in the
biological fluids (both of high ionic strength). In a similar way,
citrate-stabilized AgNPs aggregated quickly in standard media
recommended by the Organization for Economic Co-operation
and Development (OECD) for Daphnia magna toxicity testing
(Römer et al., 2011), where the high ionic strength of the media
resulted in changes in organism exposure levels. Loza et al.
(2014) studied the dissolution kinetics and nature of AgNPs after
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immersion in different media over 4,000 h. In their study, they
hypothesized that the release of silver ions led directly to silver
toxicity and confirmed this via cell culture-, microbiological-,
and reactive oxygen species experiments. Researchers have
also demonstrated that AgNPs in blood readily interact with
surrounding biomolecules such as proteins and lipids, leading to
the formation of protein coronas on the NP surface (Walczyk
et al., 2010; Mahmoudi et al., 2013). On the other hand, it has
been shown that the release of silver ions can be potentially
suppressed by the addition of humic and fulvic acids, dissolved
oxygen, natural and low salt sea water, and other organic matter
(Liu and Hurt, 2010).

In Vitro and In Vivo AgNP Studies
In the past two decades, a large research effort has been devoted
to the aspects of the toxicity of AgNPs, covering investigations
of environmental fate, and including a plethora of in vivo and
in vitro studies (Marambio-Jones and Hoek, 2010; Fabrega et al.,
2011; Zhang et al., 2014). Comprehensive reviews have been
compiled that detail the synthesis, application, subsequent routes
of exposure, and toxicological mechanisms related to AgNP
production and use (see Figure 6; León-Silva et al., 2016; Wen
et al., 2016). Published cytotoxicity tests and in vivo assays
lend limited evidence to claims that silver is carcinogenic in
any tissue (U.S. Department of Health and Human Resources,
2010). However, a plethora of in vitro studies have provided
evidence that AgNPs are not only transported into cells and
internalized, but target endosomes and lysosomes (Asharani
et al., 2009a; Luther et al., 2011), induce lung fibroblasts, impair
the cellular membrane, cause DNA damage and genotoxicity,
chromosome aberration, and apoptosis (Almofti et al., 2003;
Asharani et al., 2009b; Yang et al., 2012; Jiang et al., 2013).
Exposing A549 cells (human alveolar basal epithelial cells) to
AgNPs resulted in not only reactive oxygen species generation,
but reductions in cell viability and mitochondrial membrane
potential (Chairuangkitti et al., 2013). Conversely, exposure to
AgNPs at high concentrations (up to 6.25 µg/mL) caused not
only apoptosis and oxidative stress but morphology changes
in HT 1080 (human fibrosarcoma) and A431 cells (human
skin/carcinoma) cells which became less polyhedral, more
fusiform, shrunken, and rounded (Arora et al., 2008).

While there is evidence that AgNPs are toxic (Maurer and
Meyer, 2016), the full mechanisms of toxicity are still not well-
understood and research efforts should be devoted to gaining
more clarity. The main drawbacks to establishing a systematic
comparison of the current published studies are the lack of
uniformity (in terms of size and shape) in the synthesis and
the purification procedures of AgNPs, varying size distributions,
coatings, and precursors, a lack of particle characterization,
and the lack of implementation of validation with reference
materials (Gliga et al., 2014; Gorham et al., 2014). Nonetheless,
increased oxidative stress, apoptosis, and genotoxicity have
been highlighted as the main in vitro outcomes of AgNP
exposure (Kim and Ryu, 2013). These confounding differences
in methodology have often lead to contradictory findings in in
vitro studies. Studies that compare AgNPs of varying sizes show
a greater toxic effect for particles of smaller diameter (Carlson

et al., 2008; Braydich-Stolle et al., 2010). Oxidative stress has
been the main link to the toxicity of AgNPs themselves (Kim
et al., 2009a), but far more frequently, it is the dissolution of
AgNPs that leads to toxic effects which makes an understanding
of the ion release kinetics for AgNPs paramount (Foldbjerg et al.,
2015). Burrell (2003) found that although inert in the presence
of human tissues, metallic silver ionizes in the presence of bodily
fluids and secretions, to release the biologically active Ag+ which
has a high affinity to sulfydryl groups and other anionic ligands
of proteins, cell membranes, and tissue debris (Burrell, 2003).
Although Ag ion release has often been highlighted as the main
cause of cytotoxicity and toxic effects, researchers find difficulty
in determining the extent of the toxicity of AgNPs when Ag ions
are also present in solution (the Ag ion induced effects often
mask the effect of AgNPs at high metal ion concentrations).
Foldbjerg et al. (2015) assert that research studies are still rife with
confounding results the make ascertaining the cause of toxicity
difficult to decipher. To date, the weight researchers must place
on ion release when discussing AgNP toxicity is still a difficult
concept to discern.

While AgNPs have been shown to be toxic to bacteria, hence
their main use in the formulation of antibacterial products,
significant evidence is present to support the toxicity of AgNPs
to other organisms. Marambio-Jones and Hoek (2010) provide
comprehensive evidence that AgNPs cause inactivity not only
in bacterial cells, but also fungi, virii, and algae. AgNPs have
also been found to be toxic to models such as zebrafish (Yeo
and Yoon, 2009), Drosophila melanogaster (Ahamed et al., 2010),
Daphnia magna (Scanlan et al., 2013), andCaenorhabditis elegans
(Meyer et al., 2010 and Yang et al., 2014). Yeo and Yoon
(2009) found that nano-silver ions penetrated the skin and
blood tube of zebrafish larvae in the form of aggregates, while
Ahamed et al. (2010) found that AgNPs induced heat shock,
oxidative stress, DNA damage, and apoptosis in Drosophila
melanogaster. Further, silver nanowires were not only toxic to
Daphnia magna, but Scanlan et al. (2013) found that the surface
coating of silver nanowires (AgNWs) was dramatically modified
(as compared to pristine AgNWs) when extracted from the
organism’s hemolymph. In correlation with the effect that AgNPs
have on soil and soil ecosystems, toxic effects have also been
reported on a diverse range of soil invertebrates which include
Eisenia fetida, Enchytraeus albidus, Eisenia andrei, Porcellio
scaber, and Folsomia candida (Tkalec et al., 2011; Hayashi et al.,
2012, 2013; Gomes et al., 2013; Schlich et al., 2013; Waalewijn-
Kool et al., 2014; Gomes et al., 2015).

Effects of Ag, AgNPs, and Ag Constituents
on Human Health
As can be seen in the aforementioned sections, AgNPs have
been shown to have toxic effects to both in vitro and in vivo
models, however there is a limited number of studies that report
the impacts of AgNPs on human health (Korani et al., 2015);
rather, the impact of silver is most often presented. Currently
silver, present in the human body in low concentrations via
inhalation of air particulate and through diet and drinking
water, is considered relatively harmless to humans and is not
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regarded as toxic to the immune, cardiovascular, nervous, or
reproductive systems (ATSDR, 1990; Lansdown, 2010). Even
though the benefits of the Ag on human health are yet to be
proven, colloidal silver suspensions are being incorporated into
health supplements (Fabrega et al., 2011). Occupational health
studies have found that long-term exposures to Ag have led to
irreversible conditions such as argyria, wherein the skin turns
bluish in color as a response to the accumulation of Ag in
body tissues (Hill, 1941; Wadhera and Fung, 2005). It is worthy
to note that the critical oral dosage that elicits this effect is
not known and may vary from individual to individual. Silver
and nanosilver accumulation in the skin, liver, kidneys, corneas,
gingiva, mucous membranes, nails, and spleen are also possible
(Rosenman et al., 1979; DiVincenzo et al., 1985; Hollinger, 1996;
Sue et al., 2001; Wan et al., 1991). An extensive review of
the exposure-related health effects of silver and silver related
compounds was conducted by Drake and Hazelwood in 2005
and later by Lansdown in 2010 (Drake and Hazelwood, 2005;
Lansdown, 2010). Studies have listed the liver as the primary
organ for silver accumulation and elimination. Even though the
majority of Ag-containing consumer products are designated for
topical application, the risk of percutaneous absorption of silver
is very low as the human epidermis is a relatively impenetrable
barrier (the exception being dermal abrasions, wounds, and
cuts). Lansdown (2006) also reasons that although there is an
increasing use of Ag in silver thread and textile fibers, there has
been no evidence of increased blood silver or accumulation of
silver precipitates in the skin in chronic exposure and the risks
of argyria in these cases have been deemed negligible. In the
same vein, the toxic risks associated with silver ingestion are low,
as most products releasing Ag ions for oral or gastrointestinal
hygiene were removed from pharmacopeias and permitted lists in
most countries, in light of the risks of argyria (Lansdown, 2010).
More comprehensive studies and research efforts are necessary
to clearly aid risk assessment, identify the toxic mechanisms
of AgNPs and their toxicological effects where areas of human
health are concerned.

SYNTHESIS AND STABILIZATION OF
SILVER NANOPARTICLES (AgNPs) IN
LIQUID PHASE

Generally, the synthesis of NPs can be classified in two main
categories: Top-down, where the procedure involves the use
of bulk materials, such as metallic silver, that are reduced to
form NPs using physical, chemical, or mechanical processes;
or bottom-up, where the procedure requires starting from
molecules, atoms, or ions to obtain NPs (Hornyak et al., 2008).
Most NP synthesis approaches focus on bottom-up procedures,
particularly in liquid phase media (Klabunde, 2001; Cunningham
and Bürgi, 2013; Cushing et al., 2014; Majdalawieh et al., 2014)
and nucleation theories and mechanisms have been extensively
described by Cushing et al. (2014), Viswanatha and Sarma (2007),
Finney and Finke (2008), Thanh et al. (2014), and Kettemann
et al. (2016).

In recent years, the development of methods for the synthesis
of AgNPs has been the subject of significant interest (Tran
et al., 2013). Generally, AgNPs are synthetized in liquid phase
using chemical methods such as: Classical reduction with citrate
(Turkevich et al., 1951), reduction with NaBH4 (Lee and
Meisel, 1982), reduction with gallic acid (Park et al., 2016),
polyol synthesis (Kim et al., 2006), synthesis with organic
solvents (Pastoriza-Santos and Liz-Marzán, 1999), as well as
photochemical (Sun and Xia, 2002), electrochemical (Rodrıguez-
Sanchez et al., 2000), and sonochemical methods (Jiang et al.,
2004). However, despite the myriad of AgNP synthesis methods,
few offer the capability to achieve shape and size control.
The main impediments to the production of monodisperse,
uniformly spherical AgNPs are the formation of secondary
products (smaller and/or larger sizes) or undesirable shapes,
such as nanorods, nanocubes, nanotriangles, nanodipyramids,
and nanooctahedra (Shirtcliffe et al., 1999; Yang et al., 2011).
Therefore, it is necessary to control and establish reaction
conditions that facilitate reproducible synthesis of spherical NPs
with uniform size distributions. In this context, some of the
variables that can be tuned in the chemical synthesis process to
control the size and shape of AgNPs are:

i) the type and concentration of reducing agent (Dadosh, 2009)
or stabilizing agent (Zhao et al., 2010);

ii) the addition of complexing agents (i.e., NH3) for removing
precursor agents and decreasing particle size (Zhao et al.,
2010);

iii) the addition of alkaline co-reducers using strong and/or
weak reducing agents (Agnihotri et al., 2014).

Alternatively, other synthesis routes employ seedmethods, where
small NPs serve as seed or nucleation centers that allow control
of the shape and particle size of the AgNPs (Jana et al., 2001;
Pyatenko et al., 2007; Qu and Ma, 2012; Wan et al., 2013). The
most common methods used for the synthesis of uniform and
spherical AgNPs are summarized in Table 1.

Another important factor to consider for the synthesis of
AgNPs in liquid phase is their subsequent stabilization. The
stabilization of AgNPs is necessary for their compatibility across
the range of applications described above (Kang and Haider,
2015) and will impact the interaction in the environment.
In general terms, the stabilization processes decrease the NP
surface energy making the colloidal system thermodynamically
stable (Kraynov and Müller, 2011). Molecules and/or ligands
bound to the NP surface not only control their growth during
the synthesis process, but also aid in preventing aggregation;
defined as a “particle comprising of strongly bounded or
fused particles where the resulting external surface area may
be significantly smaller than the sum of calculated surface
areas of the individual components” (ISO/TS 80004-1, 2015),
and agglomeration; defined as a “collection of weakly bound
particles or aggregates or mixture of the two where the resulting
external surface area is similar to the sum of the surface
areas of the individuals components” (ISO/TS 80004-1, 2015;
Manojkumar et al., 2016). The main mechanisms of interaction
between these molecules and/or ligands with the surface of the
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TABLE 1 | Chemical methods for the synthesis of monodisperse and quasi-spherical AgNPs in liquid phase.

Precursor agent Reduction agent Capping agent Some experimental conditions/results References

AgNO3 ascorbic acid Glycerol/PVP d ≈ (20 to 100) nm; temp ≈ 90◦C Steinigeweg and Schlücker, 2012

AgNO3 Na3Cit Na3Cit/ TA d ≈ (10 to 100) nm; temp ≈ 90◦C Bastús et al., 2014

AgNO3 EG PVP/EG d ≈ (10 to 80) nm; temp ≈ 160◦C; t ≈ 4 h Zhao et al., 2010

AgNO3 Na3Cit Na3Cit d ≈ (10 to 80) nm; temp ≈ b.p Pyatenko et al., 2007

AgNO3 Na3Cit Na3Cit d ≈ (30 to 96) nm; temp ≈ b.p; pH ≈ 5.7 to 11.1 Dong et al., 2009

AgNO3 ascorbic acid Daxad 19 d ≈ (15 to 26) nm; temp ≈ b.p Sondi et al., 2003

AgNO3 NaBH4 or Na3Cit Na3Cit d ≈ (28 to 73) nm; temp ≈ b.p Wan et al., 2013

AgNO3 Alanine/NaOH DBSA d ≈ 8.9 nm; temp ≈ 90◦C, t ≈ 60 min Yang et al., 2011

AgNO3 Na3Cit Na3Cit/ TA d ≈ (18 to 30) nm; temp ≈ 60◦C to b.p; t ≈ 20 min Dadosh, 2009

AgNO3 NaBH4/ Na3Cit Na3Cit d ≈ (5 to 100) nm; temp ≈ 90◦C; pH: 10.5; t ≈ 20 min Agnihotri et al., 2014

AgNO3 Oleic Acid sodium oleate d ≈ (5 to 100); temp ≈ (100 to 160)◦C; t ≈ (15 to 120) min Xu and Hu, 2012

Na3Cit, Trisodium citrate; PVP, (C6H9NO)n Polyvinylpyrrolidone; TA, (C76H52O46 ) Tannic acid; DBSA, (C18H29NaO3S) dodecylbenzenesulfonic acid; Daxad 19, Sulfonated Naphthalene

Condensate (surfactant); b.p, boiling point.

NPs are mostly through chemisorption processes, electrostatic
attractions, or hydrophobic interactions (Kraynov and Müller,
2011; Manojkumar et al., 2016). Figure 7 provides an illustration
of functional groups with strong surface interactions with AgNPs
(-SH, -NH, -COOH, -C=O) that allow for functionalization and
further stabilization (Sperling and Parak, 2010).

Depending on the type of NP (i.e., the core material) and the
dispersant solvent, the choice of a specific ligand can provide
either higher or lower stability. Molecules with low molar mass
have been used as stabilizing agents (Warner et al., 2000; Nath
et al., 2010), however these types of molecules exhibit several
limitations, including the easy desorption of ligands and the
promotion of agglomeration and aggregation. (Van Hyning and
Zukoski, 1998). Alternatively, synthetic polymers can be used for
the stabilization of NPs. In this context, amphiphilic polymers
have been employed to stabilize NPs (Mayer, 2001). Polymeric
ligands tend to generate more contact points with the NP
surface, creating better interaction ligand/surface interactions
(adsorption) (Toshima and Yonezawa, 1998). On the other hand,
hydrophilic polymer chain interactions generate external loops
which can interact with the solvent and sterically stabilize NPs,
(see Figure 8).

Stabilization will directly impact the physical and chemical
properties of AgNPs, and subsequently may limit their
applications. For example, studies have shown that AgNPs
coated with polyvinylpyrrolidone (PVP) and polyethyleneglycol
(PEG) have greater stability under environmental conditions
than AgNPs stabilized using citrate (Lead et al., 2014). However,
besides capping agents, storage temperatures are also critical
to the stability of these materials. It has been shown that
different storage temperatures can produce oxidation processes
promoting unwanted shapes such as nanorods and nanoprisms
or AgNP aggregation and/or agglomeration (Pinto et al., 2010).
These processes are unintended in the synthesis of spherical
and uniform size distributions of AgNPs; therefore, it is key
to control the temperature of these colloidal systems to avoid
(thermodynamically) the formation of such structures. Also,
AgNPs can be modified and destabilized by photochemical

reactions. Gorham et al. (2012) showed that AgNPs coated with
citrate can be destabilized with UV radiation exposure. Other
factors to take into account with regard to the destabilization
of AgNPs are post-synthesis residues and incorrect purification
procedures. For examples, high concentrations of remnant
precursors and/or reducing agents in the liquid phase promote
the transformation of AgNPs into new shapes such as nanorods,
nanocubes, and nanotriangles (Murphy et al., 2001; Dadosh,
2009; Pinto et al., 2010). Additionally, pH plays an important role
which is shown where amino acid-coated AgNPs have improved
stability under acidic conditions (pH ≈ 3), eliminating the
formation of agglomerates due to suppression of intermolecular
interactions between solvent and ligand (Bayram et al., 2015).

Recently, it has been discovered that the use of biopolymers
as a capping agents foster biocompatibility and safety from
toxicological points of view (Jena et al., 2012). Specifically,
different carbohydrates and their derivatives such as a guar
gum (Vanamudan and Sudhakar, 2016), carboxymethyl cellulose
(CMC) (Velusamy et al., 2016), dextran (Cakić et al., 2016),
kappa-carrageen (Elsupikhe et al., 2015), sodium alginate
(Chunfa et al., 2016), chitosan (Shanmugaraj and Ilanchelian,
2016), heparin (Kemp et al., 2009), and hyaluronic acid (Yahyaei
et al., 2016) have been employed to stabilize AgNPs. Proteins
have also been employed for the stabilization of AgNPs. Darroudi
et al. (2011) provided a procedure for the sonochemical synthesis
of AgNPs using gelatin as both a reducing and coating agent,
obtaining very promising results in terms of sphericity and
distribution of particles in the sub-10 nm range.

Furthermore, some studies demonstrate the good stability
of capped biopolymer-AgNPs. Chen et al. (2008b) obtained
highly stable AgNPs-CMC that showed no apparent change
in their optical spectrum extinction when stored at 25◦C
for 58 days. Darroudi et al. (2011) determined that there
is no change in optical extinction spectrum of AgNPs
capped with chitosan/gelatin over a period of 4 months.
Shanmugaraj and Ilanchelian (2016) later demonstrated
that AgNPs capped with chitosan were stable for more
than 4 months. All the studies described above, show that
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FIGURE 7 | An illustration of some selected surface chemistries and conjugation strategies that are applied to NPs. Reproduced from Sperling and Parak

(2010) with permission of the Royal Society.

FIGURE 8 | Steric stabilization of AgNPs. Reproduced from Zamiri et al. (2010) with permission of MDPI, Basel, Switzerland. CC BY 3.0.

biopolymers can be used as capping agents and provide
evidence for employing these macromolecules as stabilizing
agents for NPs in liquid phase. Overall, the stabilization of
AgNPs and other NPs in liquid phase is still considered a

chemical challenge, mainly due to the complexity of some
liquid media (biological, environmental, organic, etc.),
environmental factors, and also due to the highly dynamic
diffusion, sedimentation, agglomeration, and aggregation
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TABLE 2 | Common measurement techniques (MT) used for the characterization of NPs.

MT Some properties References

Size/distrib. Shape and

morphology

Surface

area

Surface

chemistry

Chemical

composition

Coating

Chemistry

Chemical

structure

Charge in

suspension

AFM • • Hoo et al., 2008

AES • Baer et al., 2010

ATR-FTIR • López-Lorente and Mizaikoff,

2016

BET • Brunauer et al., 1938;

Schmid and Stoeger, 2016

CLS • Braun et al., 2011a

DMA • Mader et al., 2015

DLS • • Tomaszewska et al., 2013

EDS • Patri et al., 2009

EELS • Hohenester et al., 2009

ETAAS • Hartmann et al., 2013

NMR • Liu et al., 2009; Marbella and

Millstone, 2015

ICP-MS • Fabricius et al., 2014

PTA • Gallego-Urrea et al., 2011

SAXS • Li et al., 2016

SEM • • Delvallée et al., 2015b

TOF-SIMS • • Kim et al., 2015

sp-ICP-MS • • Montaño et al., 2016

TEM • • Pyrz and Buttrey, 2008

XPS • Baer et al., 2010

AFM, Atomic Force Microscopy; AES, Auger Electron Spectroscopy; BET, Brunauer-Emmett-Teller method; ATR-FITR, Attenuated Total Reflectance Fourier Transfom-Infrared

Spectroscopy; CLS, Centrifugal Liquid Sedimentation; DMAS, Differential Mobility Analysis; DLS, Dynamic Light Scattering; ET-AAS, Electrothermal Atomic Absorption; EELS, Electron

Energy Loss Spectroscopy; EDS, Energy Disperse X-Ray Spectroscopy; ICP/MS, Inductively Couple Plasma Mass Spectrometry; NMR, Nuclear Magnetic Resonance; PTA, Particle

Tracking Analysis; SAXS, Small-Angle X-Ray Scattering; SEM, Scanning Electron Microscopy; TEM, Transmission Electron Microscopy; SIMS, Secondary Ion Mass Spectrometry;

TOF-SIMS, Time of Flight Secondary Ion Mass Spectrometry; spICP-MS, Single Particle Inductively Coupled Plasma Mass Spectrometry; XPS, X-Ray Photoelectron Spectroscopy.

processes that AgNP experience which can reduce their
entropy.

MEASUREMENT AND
CHARACTERIZATION OF SILVER
NANOPARTICLES (AgNPs): A
METROLOGICAL APPROACH

As previously mentioned, NPs constitute a focus of interest
in nanoscience and nanotechnology (Kang and Haider, 2015;
Sharma et al., 2015). Particularly, there is an interest in
establishing controlled chemical (e.g., chemical composition
of the core, surface chemistry, bulk element composition,
internal/external chemistry of mixing state, and oxidation
state) and physical properties (e.g., size, shape, number and
mass concentration, surface area, total mass, crystallinity,
morphology, and optical properties) of these nanoobjects.
Moreover, due to advancements in the production and
applications of nanomaterials, scientists are developing new,
and adapting classic, analytical techniques for the detection,
characterization, and quantification of NPs. An extensive
discussion of the fundamentals and analytical capabilities

of the most common techniques for the characterization
of NPs (specifically metal, metal oxide and metalloid) has
been thoroughly reviewed (Gunsolus and Haynes, 2015;
Costa-Fernandez et al., 2016; Laborda et al., 2016; Majedy
and Lee, 2016) and can be used for further consultation.
The main current measurement techniques (MTs) for the
characterization of NPs in general, and AgNPs in particular,
and the requisite information they provide are listed in
Table 2.

Advances in the characterization of NPs need to be
accompanied with a standardized metrological approach
(metrological traceability, estimation of the measurement
uncertainty, use of standardized/validated methods, use of
reference materials, participation in interlaborary comparisons)
to assure the comparability of themeasurements at the nanoscale.
In others words, the measurements made using a metrological
approach allow the establishment of extremely important
variables in the quality of the measurements such as bias,
precision and traceability to International System of Units (S.I).
Consequently, it allows accurate and concrete conclusions of the
chemical or physical property studied at the nanoscale. In the
last decade, some institutions and standardization bodies have
been working to establish standards, protocols, guidelines, and
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TABLE 3 | Representative standards, guides, and protocols developed in the recent years for the characterization of NPs.

MT Type of MT Organization or institution

NIST ASTM ISO

AFM Microscopy Grobelny et al., 2009 ASTM E2859-11, 2011 –

ARS Spectroscopic – – ISO 20998-2, 2013

BET Integral – ASTM E2864-13, 2013 ISO 9277, 2010

CLS Centrifugation – – ISO 13318-1, 2001

DMAS Fractionation Pease et al., 2010 – ISO 15900, 2009

DLS Spectroscopic Hackley and Clogston, 2015 ASTM E2490-09, 2015; ASTM WK54872 ISO 22412, 2008

FT-IR Spectroscopic – –
ISO/TS 1410

PTA Microscopy – ASTM E2834-12, 2012 ISO 19430, 2016

SAXS Spectroscopic – – ISO 17867, 2015

SEM Microscopy Vladár and Ming, 2010
ASTM WK39049

ISO 13322-1, 2014

spICP-MS Spectroscopic Murphy et al., 2015
ASTM WK54613 ISO/TS 19590

TEM Microscopy Bonevich et al., 2010 – ISO 29301, 2010; ISO 13322-1, 2014

AFM, Atomic Force Microscopy; ARS, Acoustic Resonance Spectroscopy; BET, Brunauer-Emmett-Teller method; CLS, Centrifugal Liquid Sedimentation; DMAS, Differential Mobility

Analysis system; DLS, Dynamic Light Scattering; FITR, Fourier Transfom-Infrared Spectroscopy; PTA, Particle Tracking Analysis; SAXS, Small-Angle X-Ray Scattering; SEM, Scanning

Electron Microscopy; spICP-MS, Single Particle Inductively Coupled Plasma Mass Spectrometry; TEM, Transmission Electron Microscopy.

procedures for the correct measurement and characterization of
NPs (see Table 3).

While an extensive discussion of the measurement techniques
and their analytical capabilities are beyond the scope of this
review, we will focus on the metrological aspects of some of the
most important measurement techniques for the characterization
of AgNPs. In this context, microscopy techniques are extremely
powerful analytical tools for the characterization of AgNPs.
For example, MacCuspie (2011) used Atomic Force Microscopy
(AFM) with the goal of exploring the stability of AgNPs capped
with citrate and bovin serum albumin (BSA) in solvents with
different electrolyte concentrations and pH conditions. Their
AFM results, accompanied with measurements of ultraviolet-
visible spectroscopy (UV-Vis) and dynamic light scattering
(DLS), showed how the stability of the AgNPs are highly affected
by different factors (pH, electrolytes concentrations, and capping
agent). Also, they demonstrated how different MTs such as
AFM, UV-Vis, and DLS, can be used for evaluating the stability
and characterizing these colloidal systems. Transmission electron
microscopy (TEM) and scanning electron microscopy (SEM) are
other microscopy techniques widely used in the characterization
of AgNPs in the metrological field. Klein et al. (2011b) used
SEM and TEM in order to characterize and establish the particle
size and size distribution of its representative test material, NM-
300 (see definition of representative test material, RTM, in the
next section of this document). The use of complementary MTs
such a UV-Vis, graphite furnace atomic absorption (GFAAS), and
inductively coupled plasma optical emission spectrometry (ICP-
OES) were used to study stability, the release of ionic silver, and to
quantify the total silver mass of this RTM, respectively. Recently,
Verleysen et al. (2015) used TEM for the measurement and
the validation of 23 dimensional and morphological parameters
(diameter, perimeter, central distance, shape factor among

others) of AgNPs, providing the measurement uncertainty of
these parameters. In the same context, Dudkiewicz et al. (2015)
reported the use of electron microscopies (SEM and TEM)
for the characterization of AgNPs spiked into two different
food matrices (chicken paste and tomato soup). Their study
has generated a key metrological input in the determination of
particle size in a complex matrix (food) by electron microscopy
techniques, because they assessed the impact of different sources
of uncertainty such as sampling, sample preparation prior to
imaging, and image analysis in the total uncertainty of the particle
size determination.

In general terms, microscopic techniques have been a focus
of attention for the metrological characterization of NPs. For
example, in recent years the effect of different substrates on
the determination of the particle size has been studied by AFM
(Delvallée et al., 2015a,b). Also, different detector systems such as
darkfield, brightfield (Buhr et al., 2009; Klein et al., 2011b) and
energy dispersive X-ray detectors (EDS) (Hodoroaba et al., 2016)
have been used in SEM measurements for the determination of
particle size, size distribution, and chemical surface of different
NPs. Additionally, systematic procedures for the generation of
an unbiased random image collection, validation of size, shape,
and surface topology measurements and for the evaluation
of measurement uncertainty using TEM have been proposed
by De Temmerman et al. (2014). Moreover, various statistical
criteria have been established to select the correct number of
particles (population) for the determination of the size and size
distribution of NPs using TEM (Song et al., 2009; Rice et al.,
2013). Other techniques such as dynamic light scattering (DLS),
(Takahashi et al., 2008; Kwon et al., 2011), centrifugal liquid
sedimentation (CLS), (Braun et al., 2011a), and nanoparticle
tracking analysis (NTA), (Hole et al., 2013), are currently being
implemented in the metrological field for the characterization of
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different varieties of NPs (metal, metal oxide, andmetalloid NPs).
A good example is the development of RMs in the nanoscale,
where the combination of multiple methods is necessary to assign
and characterize the different properties of these materials.

In the specific case of AgNPs, many of the MTs described
above can be used for the characterization of their chemical
and physical properties. For example, MacCuspie et al. (2011),
report the use of multiple MTs such AFM, TEM, DLS, NTA,
and ultrasmall angle X-ray scattering (USAXS) for the physico-
chemical characterization of AgNPs. The same group also
discuss the different results obtained by these MTs in the
determination of the size, size distribution and agglomeration
of the AgNPs. Martin et al. (2014) used USAXS and TEM
to understand and study the dissolution, agglomeration,
morphology, and stability of AgNPs exposed under different acid
concentration (HNO3). Moreover, they used UV-Vis and DLS
to investigate the stability of AgNPs in strong acid media and
evaluated the morphology the AgNPs coated with BSA. Murphy
et al. (2015) established a protocol for the determination of
mean nanoparticle size (equivalent spherical particle diameter),
number based size distribution, particle number concentration,
and mass concentration of ions in an aqueous suspension of
AgNPs using single particle inductively coupled plasma mass
spectrometry (spICP-MS). These are just some examples of the
different MTs that can be used for the characterization of AgNPs.
Finally, all these techniques can be employed in concert toward
one of the most important task in the chemical metrology field:
The development of reference materials (see Table 4). A good
example of this is the multimethod approach used by NIST in the
development of the NIST RM 8017 PVP-coated AgNPs (NIST,
2015d). In their investigation report, AFM, TEM, USAXS, and
DLS was used by NIST researchers to determinate the particle
size of this nano-object. It is important to mention that the
determination of the particle size of NPs is method dependent,
and as a result of this, NIST attempted to characterize its RM
using different MTs. Other MTs such as isotopic dilution mass
spectroscopy (IDMS), asymmetric-flow field-flow fractionation
(AF4), ICP-MS, UV-Vis, and spICP-MS have been used to
characterize important properties in the RM including the silver
mass content, elemental impurities, absorbance spectrum and
others.

Despite this, further advancements are necessary to work
toward improving the measurement and characterization of
AgNPs and NPs in general, as many analytical techniques
are still hampered with limitations (especially at the small
end of the nanoscale range, i.e., sub-10 nm). In the specific
case of AgNPs, the simultaneous determination of ionic
silver and AgNPs in colloid suspensions still present an
analytical challenge for most of the MTs. This aspect is solved
partially by techniques like spICP-MS, however limitations
such as limit of detection (LOD) and the overlap of ionic
silver and AgNPs signals still obstruct the characterization by
this technique in some cases. On the other hand, a large
number of nanotoxicological and environmental studies lack a
metrological approach, leaving out important metrological tools
that enable the comparability and reproducibility of results. Such
tools include standardized/validated methods, use of reference

materials, and the estimation of the measurement uncertainty in
the nanoscale. The studies described above reflect the continued
importance of the development of robust, comparable, analytical
methodology in order to achieve improvement of measurement
in the nanoscale.

DEVELOPMENT OF NANOPARTICLE
REFERENCE MATERIALS (RMs) IN THE
NANOSCALE

Advances in nanoscience create demand for improvement
in measurement capabilities. Therefore, quantitative
measurements, stable instruments (in terms of drift, instrumental
noise, sensitivity, and LOD), measurement protocols, and
reference materials (RMs) are metrological mechanisms
necessary for the advancement and consolidation of reliable
and traceable measurements in this field (Picotto et al., 2009).
Specifically, RMs play an integral role in the improvement
and quality assurance of measurements in the nanoscale
(see Figure 9). For example, (Montoro Bustos et al., 2015),
reported the first post hoc interlaboratory study using the NIST
RM 8012 (AuNPs, nominal 30 nm diameter) and RM 8013
(AuNPs, nominal 60 nm diameter) to evaluate the independent
particle size measurements made by researchers in academia,
government, and industry using single particle inductively
coupled plasma mass spectrometry (spICP-MS). Meli et al.
(2012), used different RMs, specifically the NIST RM 8011
(AuNPs, nominal 10 nm diameter), NIST RM 8012 (AuNPs,
nominal 30 nm diameter), NIST RM 8013 (AuNPs, nominal
60 nm diameter), and IRMM-304 (Colloidal Silica Reference
Material developed by the Institute for Reference Materials and
Measurements, IRMM) in order to validate the measurement
results and uncertainty estimations reported by various European
Metrology Institutes using different MTs (AFM, DLS, SAXS,
SEM). Others examples are consistent in demonstrating the
critical role of RMs in improving the comparability of the
measurements in the nanoscale (Roebben et al., 2011; Braun
et al., 2012). However, in this context it is important to define
what is considered a RM. According to ISO, a RM is a “material,
sufficiently homogeneous and stable with respect to one or more
specified properties, which has been established to be fit for its
intended use in a measurement process” (ISO/Guide 30, 2015).
In a practical way, a RM is a material with enough trueness
to be used as a standard in a measurement. Subsequently,
a certified reference material (CRM) is defined by ISO as
a “reference material characterized by metrological valid
procedure for one or more specified properties, accompanied
by a certificate that provides the value of the specified property,
its associated uncertainty and a statement of metrological
traceability” (ISO Guide 30, 2015). The term “CRM” introduces
two main metrological concepts: Measurement uncertainty and
metrological traceability. Therefore, the basic difference between
a RM and CRM is the status of the property values assigned
to the material (Roebben et al., 2013). In the nanoscale, these
definitions have the same meaning, nevertheless, the complexity
of the systems and measurement capabilities at the nanoscale
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TABLE 4 | NPs reference materials and certified reference materials developed in the recent years.

Material Property

measured

Form/

quantity

Value and

uncertainty

MTs used NMI(id) Proposed uses References

AuNPsa (RM) Particle size LS/5 ml (8.5 ± 0.3) nm AFM NISTf (RM 8011) Instrument calibrations,

evaluation of in vitro assays

(bioassays), interlaboratory

comparison

NIST, 2015a

(9.9 ± 0.1) nm SEM

(8.9 ± 0.1) nm TEM

(11.3 ± 0.1) nm DMA

(8.5 ± 1.8) nm SAXS

AuNPsa(RM) Particle size LS/5 ml (24.9± 1.1) nm AFM NISTf (RM 8012) Instrument calibrations,

evaluation of in vitro assays

(bioassays), interlaboratory

comparison

NIST, 2015b

(26.9 ± 0.1) nm SEM

(27.6 ± 2.1) nm TEM

(28.4 ± 1.1) nm DMA

(28.6 ± 0.9) nm DLS (173◦)

(26.5 ± 3.6) nm DLS (90◦)

(24.9 ± 1.2) nm SAXS

AuNPsa(RM) Particle size LS/5 ml (55.4 ± 0.3) nm AFM NISTf (RM 8013) Instrument calibrations,

evaluation of in vitro assays

(bioassays), interlaboratory

comparison

NIST, 2015c

(54.9 ± 0.4) nm SEM

(56.0 ± 1.5) nm TEM

(56.3 ± 1.4) nm DMA

(56.6 ± 0.9) nm DLS (173◦)

(55.3 ± 3.6) nm DLS (90◦)

(53.2 ± 1.2) nm SAXS

AgNPsb(RM) Particle size DS/ ≈ 2g (70.1 ± 6.0) nm AFM NISTf (RM 8017) Benchmark and evaluation

of potential EHS

NIST, 2015d

(74.6 ± 3.8) nm TEM

(67.9 ± 0.5) nm USAXS

(105.6± 4.6) nm DLS

Mass value (2.162 ± 0.020)f mg IDMS

AgNPsc(CRM) Particle size LS/5 ml d10(12.0 ± 1.9)d nm

d50(18.5 ± 2.5)d nm

SAXS BAMg(BAM N001) Used as standard material

for measurements and

toxicological test

Menzel et al., 2013

d90(18.5 ± 2.5)d nm

d10(6.9 ± 1.9)e nm

d50(12.6 ± 2.5)e nm

d90(19.4 ± 2.5)e nm

SiO2-NPs(CRM) Particle size LS/10 mL (19.0 ± 0.6) nm DLS IRMMh (ERM FD100) Evaluated, Instrument and

method performance

Braun et al., 2011b

(20.1± 1.3) nm CLS

(19.4 ± 1.3) nm TEM

(21.8 ± 0.7) nm SAXS

SiO2-NPs (CRM) Particle size LS/9 mL (42.1 ± 0.6) nm DLS IRMMh (ERM FD 304) Evaluated, Instrument and

method performance

Franks et al., 2012

(33.0 ± 3.0) nm CLS

(Continued)
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TABLE 4 | Continued

Material Property

measured

Form/

quantity

Value and

uncertainty

MTs used NMI(id) Proposed uses References

PS (CRM) Particle size LS/5 mL (60.39 ± 0.63) nm DMA NISTfSRM 1964 Calibration/validation of

particle sizing instruments

NIST, 2014a

PS (CRM) Particle size LS/5 mL (60.39 ± 0.63) nm DMA NISTf (SRM 1963a) Calibration/validation of

particle sizing instruments

NIST, 2014b

TiO2(CRM) Specific

Surface Area

PPS (55.55 ± 0.70) m2g−1 MP-BET NISTf (SRM 1898) Benchmark and evaluation

of potential EHS

NIST, 2012

(53.85 ± 0.78) m2g−1 SP-BET

CRM, Certified Reference Material; DS, Dry Solid, EHS; Environmental, Health, and Safety Risks; RM, Reference Material; LS, Liquid Suspension; PPS, Powder and Porous Solid.
acitrate-stabilized AuNPs in an aqueous suspension.b lyophilized polyvinylpyrrolidone (PVP)-coated AgNP, cAgNPs stabilized against aggregation using polyoxyehylene glycerol trioleate,

polyoxiethylene sorbitan monolaurate, dThe d10, d50, and d90 values are specific particle diameters (volume weighted) that correspond to 10,50, and 90% of the total particles in cumulate

undersize distribution, eThe d10, d50, and d90 values are specific particle diameters (number-weighted) that correspond to 10,50, and 90% of the total particles in cumulate undersize

distribution, fExpanded uncertainties, U, calculated as U = kuc, where uc is intended to represent, at the level of one standard deviation, the combined standard uncertainty calculated

according to the ISO/JCGM Guide (BIPM et al., 2008). The coverage factor, k, for 95 % expanded uncertainty intervals is based on a t multiplier with the appropriate associated

degrees of freedom, gExpanded combined uncertainty consisting of contributions from method repeatability, measurement setup geometry, method bias, possible but undetected

inhomogeneity and instability, and the model used, in particular binning, expanded by a factor or k = 2 corresponding to a confidence level of ∼95%, hThe certified uncertainty is the

expanded uncertainty with a coverage factor k = 2 corresponding to a level of confidence of about 95 % estimated in accordance with ISO/IEC Guide 98-3:2008 (ISO/IEC Guide 98-3,

2008).

FIGURE 9 | Uses of reference materials in the nanoscale.

makes the development of CRMs more challenging because
many of the measurands are method-defined making it difficult
to establish a clear link to the SI. The measurement of chemical
and physical properties of sub-10 nm nano-objects is a challenge
for most analytical techniques and, reactivity, aggregation,
agglomeration, and interactions between the dispersant medium
add more complexity to the measurement system resulting
increase in the uncertainty of the measurement.

For all these reasons, in recent years there has been a strong
interest in developing NP RMs in the nanoscale, since they
can shed new light not only on the impact of nanomaterials
with respect to EHS, but also on ways in which the quality of
measurements in the nanoscale can be improved or quality-
assured (Hansen et al., 2007; Stefaniak et al., 2013). Aitken et al.
(2008), established a priority list of candidate materials for the
production of nanotoxicology RMs. This list consisted of several
nanomaterials such as a carbon black, single and multiwalled

carbon nanotubes (SWCNT/MWCNT), fluorescent polystyrene,
combustion-derived NPs, TiO2-NPs, ZnO-NPs, AgNPs. Others
materials such as AuNPs, CeO2-NPs, SiO2-NPs, ceramics, and
nanoclays were identified also as a potential RMs. Stone et al.
(2010), evaluated which of these materials were suitable for
employment in ecotoxicological studies. They identified TiO2-
NPs, polysterene beads labeled with fluorescent dyes, and AgNPs,
as materials that would be useful to produce test- or reference
materials. A comprehensive approach for the prioritization of
materials that can be developed into reference materials was
made recently by Stefaniak et al. (2013), where a list of 25
individual nano-objects was generated with scientific interest for
the generation of RMs for risk assessment. In particular, they
highlighted NPs such as CeO-NPs, SiO2-NPs, TiO2-NPs, ZnO2-
NPs, AuNPs, and AgNPs. Table 4 lists RMs developed in the
recent years by different National Metrology Institutes (NMIs).
As can be seen, the proposed purposes of these RMs ranges from
instrumental calibration to the evaluation of potential EHS risks.

Despite the identification and prioritization of materials to be
developed as RMs in the nanoscale, the properties required to be
assigned or certified have a huge importance in the development
of a new RM. Composition (elemental/molecular), surface area,
particle size, particle size distribution, morphology/shape/form,
surface chemistry, agglomeration/aggregation state, crystal
structure, and surface charge are frequently suggested to be
value-assigned in RM candidates. Additionally, some challenges
still remain from the metrological standpoint in regards to
certifying properties in the nanoscale. Many of these properties
are only broadly defined or qualitative (i.e., aggregation and
agglomeration), limiting the possibility of assigning a reference
value (Stefaniak et al., 2013). As mentioned above, many
of these properties are method-dependent; for instance, the
determination of the particle size in a reference material in the
nanoscale is usually made using differentMTs such as DLS, AFM,
TEM, SEM, NTA, and others which rely on different measurands
(Kestens et al., 2016). The production of RMs requires the
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establishment of validated methods with a full estimation of the
uncertainty sources that have been involved in the measurement
(ISO/Guide 34, 2009). This aspect may seriously hinder the
development of RMs, because as previously mentioned, only
a few standardized procedures for the characterization of
properties of NPs are available, the majority of which are focused
on the determination of dimensional properties such as particle
size and particle size distribution (see Table 3).

Matrix plays an important role in the production and
certification of NP RMs. Grombe et al. (2015), described
the feasibility of the development of RMs for the detection
of AgNPs in food matrices. Their results indicate significant
differences in particle size when the AgNPs are dispersed in
meat materials in comparison to water suspensions. They also
reported difficulties in the development of efficient methods
for the detection of AgNPs, principally due to AgNP reactivity
being higher in comparison to more stable NPs (e.g., metal
oxides like TiO2). Furthermore, another important factor to
consider in the production of RMs at the nanoscale, is the
form of the nanomaterial. Linsinger et al. (2011), discussed in
detail two different forms (states of matter) that are conceivable
for NP RMs: Suspensions of particles and dry powders. In
suspension, NPs have better motion (promoted by Brownian
Motion and diffusion process), producing an easier dispersion
and homogenization of the material. However, this can promote
the interaction with other molecules or even promote interaction
between the NPs (aggregation, agglomeration, Ostwaltd ripening,
or coarsening). For example, Gorham et al. (2014) demonstrate
AgNPs suspensions capped with citrate lose their physical and
chemical integrity by oxidation process and oxidation process
followed by photoreduction. On the contrary, in powder form,
NPs are more stable, essentially because the chemical changes
only progress by diffusion, which is a rather slow process
in this state of mater. To promote long-term stability, some
dry powder RMs are stored in inert atmospheres, preventing
the chemical degradation of the materials (Hornyak et al.,
2008). MacCuspie et al. (2013), stabilized AgNPs in excess
PVP and then lyophilized the formulated AgNPs to produce
a cake of NPs that can be reconstituted simply by adding
water. This approach resulted in a practical way to eliminate
chemical changes of the AgNPs, conserving the particle size
within the shelf-life required for a RM and was used in the
development of the NIST RM 8017 Polyvinylpyrrolidone Coated
Silver Nanoparticles (Nominal Diameter 75 nm) (NIST, 2015d).
A drawback of the use of dry powder RMs is the possible need
for redispersion protocols (Linsinger et al., 2011) to ensure that
a homogeneous suspension is formed. This can be problematic,
especially in the case of users with limited experience or
expertise in sample preparation procedures and could generate
a bias which is not intrinsic to the property certified. On
the other hand, NP RMs in suspension (liquid phase) are
characterized with respect to homogeneity and are easier to use.
However, as was previously discussed that NPs in liquid phase
(colloidal suspensions) need to be correctly functionalized in
order to prevent their destabilization, which can create issues in
ensuring long-term stability. In this aspect, Orts-Gil et al. (2013)
pointed out that the development of functionalized, colloidal,

stable RMs, may improve comparability between results across
different laboratories, and provide convenience and feasibility in
establishing multi-parametric RMs for engineered NPs.

It is important to mention that the development of a NP RM is
an arduous process that involves many technical and production
requirements (for example, production planning, production
control, material storage, material processing, data acquisition,
data evaluation, and in the case of CRMs, establishing
metrological traceability, etc.) (ISO Guide 34, 2009). Recently,
a new term has been proposed: “Representative Test Material
(RTM).” RTMs will serve to cover gaps in the availability of NP
RMs (Roebben et al., 2013). Specifically, a RTM is defined as “a
material from a single batch, which is sufficiently homogeneous
and stable with respect to one or more specified properties, and
which implicitly is assumed to be fit for its intended use in
the development of test methods which target properties other
than the properties for which homogeneity and stability have
been demonstrated (ISO/TS 16195, 2013).” In the recent years,
the Organization for Economic Co-operation and Development
(OECD), in conjunction with the European Joint Research
Center (JRC), has worked on the development of a wide range of
RTMs to support nanomaterial research and development. Some
examples of the RTMs developed at this moment are illustrated
by Singh et al. (2011), Klein et al. (2011a), Rasmussen et al. (2014),
Roebben et al. (2015) and on the website of the JRC (JRC, 2016).

OUTLOOK AND PERSPECTIVES

Concepts, definitions, and terminology in nanoscience and
nanotechnology are currently changing in response to increased
research efforts and the extraordinary growth that this area has
experienced in the last two decades. Several factors (economic,
social, and environmental) are promoting the establishment
of robust and well-founded terminology that contribute to
building sensible legislation and regulation. However, the
development and consistent implementation of defined “nano”
terms represent a tremendous challenge.

Regardless of the difficulty in implementing regulation and
legislation, a large number of scientific and technological
applications and commercial products already incorporate NPs
into their design. Particularly, AgNPs have been listed as
a one of the most used nano-objects in commerce, mainly
due to its versatile properties (catalytic, optical, engineering,
electrical, biomedical, among others). The promising economic
and technological landscape of NP applications emphasizes the
concern regarding possible environmental, health, and safety
(EHS) risks of these materials. In the last 10 years, toxicological,
ecotoxicological, and genotoxicogical effects of AgNPs have
been indicated in many studies. So far, the state of the art
of nano-EHS research is promising and evolving, but its
development is still limited in comparison to the exponential
growth of new applications and products that incorporate NPs
into their formulations. Moreover, the understanding of toxicity
mechanisms, long-term accumulation effects, and dose-response
relationship is still in its infancy. As a result, more studies will
center around making accurate assessments of the implications
and impacts of the production of AgNPs on EHS over the
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next years. To address these challenging tasks, more studies and
results derived from rigorous in vitro and in vivo studies (e.g.,
bioaccumulation and bioavailability) will be necessary in order to
elucidate the true impact of these materials. These studies will
provide a scientific and technical basis for building worldwide
consensus on regulation. Also, a concerted multidisciplinary
effort must be continued to capitalize on initial findings in
order to advance the investigation of relevant environmental
scenarios.

Other efforts should be made in the area of NP synthesis
and stabilization. Nowadays, among the great variety of chemical
routes for the synthesis of AgNPs, only few enable control
of the production of NPs with sufficient homogeneity of size
and shape, both key parameters and highly demanded in the
development of new applications. Besides that, the development
of new synthesis routes that are much more efficient and use
green synthesis approaches present emerging strategies to make
the production of AgNPs more sustainable and environmentally
friendly. Additionally, the use of biopolymers such as proteins,
carbohydrates, and other types of macromolecules as stabilizing
and functionalizing agents can improve the long term stability
of the AgNPs in liquid phase and increase biocompatibility
with environmental and biological systems. So far research into
the stabilization of AgNPs using biopolymers is not sufficiently
advanced to establish a clear stabilization mechanism using these
coating agents. The behavior of this type of functionalized AgNPs
under various conditions or factors that can compromise stability
such as pH, temperature, UV radiation, etc., has yet to be studied.
Given the above concerns, it is necessary to perform in-depth
investigations of synthesis routes using biopolymers that control
the shape, size, and stability of AgNPs.

With regard to the metrological field, the characterization of
NPs is still considered a challenge because some measurement
properties are method dependent, which hampers the
comparison of values obtained from different measurement
techniques. Continuous efforts have been made by the scientific
community to standardize measurement protocols. In fact,
some protocols, technical standards, and procedures have
already been generated by different international organizations
(e.g., ISO/TC 229 and ASTM E56) in order to provide more
suitable and robust methods. Specifically, these efforts have
focused mainly on the dimensional properties (size, shape,

and distribution) of nanomaterials. However, it is necessary
to develop/implement analytical techniques to extend the
NP characterization capabilities toward the measurement of
other important properties such as surface chemistry, chemical
structure, and chemical composition. Moreover, the ability to
provide traceability to the SI at the nanoscale level has also proven
to be quite a challenge. Some of the MTs may be directly or
indirectly linked to the S.I., however many of these MTs provide
semiquantitative and/or qualitative measurements that are not
metrologically traceable. This is a limiting factor in areas such
as nanotoxicology, ecotoxicology, and biomedical applications
where these properties like surface charge, hydrophobicity, and
agglomeration state play critical roles. Finally, the development
of NP RMs is crucial to providing sound metrological tools
for industry and the scientific community implementation to
evaluate their measurement capabilities. However, presently the
availability of NP RMs is quite limited because of the technical
complexity that is involved the production of these materials.
Though more RMs have been developed in recent years, in
many cases RMs are not available for relevant measurands
and to cover the myriad of scenarios where nanomaterials are
being currently applied. It is expected that in the next few
years more RMs and RTMs will be released in order to provide
comparability and to assure the quality of measurements in the
nanoscale.
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